Chapter 1: Conceptual Basis Section 3

Based on textbook *Conceptual Computer Networks* by: © 2015-2022 José María Foces Morán, José María Foces Vivancos. All rights reserved

V 2.3 23rd/Mar/2022

2

Sharing connectivity

How to share a link, a network among multiple users

Review of terminology

- **Hosts**: the computers that run the application programs
 - Clients
 - Servers

Network nodes

DataComm equipment for building a network

□ Links:

- **The physical transmission media and the controlling protocol**
 - Simplex
 - Half-duplex
 - Full-duplex
- **Radio waves (WiFi), Twisted Pair cables, Optical Fibers, etc**

Multiplexing = sharing

Switch1 and Switch2 are linked by a single link

- How can that link be shared among the hosts?
- How can that sharing be done?
 - By multiplexing the flows of packets over the link that connects the switches

Physical-layer Multiplexing Techniques

- 5
- 1. Synchronous Time-division Multiplexing (STDM)
 - Allocate a predetermined time slot to each flow
 - Each flow avails the full bandwidth when transmitting
 - Drawbacks
 - If a flow is not transmitting (idle), its slot remains allocated and is wasted

Physical-layer Multiplexing Techniques

2. FDM: Frequency Division Multiplexing

- Similar to FM radio
- Each flow is assigned a portion (a band) of the link spectrum
- Each portion is the same size (bandwidth)
- Cable TV, certain Cellular Telephony (Slots of 30 kHz each), etc

Physical-layer Multiplexing Techniques

3. Statistical Multiplexing

- Sources are supposed to be <u>bursty</u>
- The bandwidth of the shared link is <u>a fraction of the peak</u> aggregated bandwidth of the other links
- If two or more bursts overlap, then the multiplexor must queue them until ready for transmitting them

A bursty source

Multiplexing techniques

- 3. Statistical Multiplexing
 - Packet queueing means delays packets
 - Queue length
 - Mean delay
 - Statistical Multiplexing Gain
 - FIFO, Round Robin, etc.
 - Some switches may apply QoS (Quality of Service):
 - Priorities
 - WFQ, etc
 - Congestion

Traditional types of networks

According to their geographical extent and their goals

- LAN : Local Area Network
 - Ethernet
- MAN: Metropolitan
 - WiMax
- WAN: Wide
 - **X.25**
- SAN (System Area Networks)
 - Interconnect hard disks, network storage
 - High speed

Network Reliability

Types of errors that may occur in the Internet

Single bits are lost

- Bit errors (1 to a 0, and vice versa)
- Burst errors several consecutive errors
- Whole packets are dropped (Congestion causes buffer overflows at the output queues)
- Links and Node failures
- Packets are delayed
- Packets may be delivered out-of-order
- Third parties eavesdrop

Network Management

- 11 D Network management
 - Manage the daily operation of networks
 - □ Guarantee uptime
 - **Times at which the network is available**
 - □ In real time
 - Monitor networks
 - Change configurations
 - **Traffic engineering**
 - □ An automated process
 - Specific software "Network Management System"
 - Protocols: SNMP
 - Data structures: RMON, MIBs
 - □ Home networks: Plug and play
 - □ All this is quickly moving towards <u>Software Defined Networking</u> (SDN)

12

Network Performance: Networks must be fast

What are the essential network performance metrics: bandwidth and latency

Transmission media AS systems

Bandwidth is a property of every system

14

The width of the accepted frequency band

- $\Box \quad \text{Measured in Hz} = 1/s$
- In networking <u>bps</u> means bits per second
 - bits/s
 - □ bits · Hz
- Often, bandwidth and transmission speed are proportional

Bandwidth and transmission speed

Performance

16

Bandwidth

- Width of a frequency band
- Number of bits per second that can be transmitted over a communication link in a given period of time
- **D** The inverse of Bw is the time it takes to transmit one bit
 - 1Mbps = 1M bits/s = 10⁶ bits/s \rightarrow T_{transm}1 bit = 10⁻⁶ s/bit \cdot 1bit = 1µs
- Higher bandwidth (speed) means shorter transmission times
- Multipliers used in expressing speeds (ratios)
 - **1** Kbps = 1K bits/s = 10^3 bits/s
 - 1Mbps = 1M bits/s = 10^6 bits/s
 - **1** Gbps = 1G bits/s = 10^9 bits/s

Total time to transfer one packet onto a Point-to-Point connection

17

□ Latency = Propagation + transmit + queue

- □ Propagation time = physical link distance/speed of light m / (m/s)
 - The time it takes for the signal corresponding to ONE BIT to travel from the sender through the receiver
- Transmit time = packet size/bandwidth bits / (bits/sec)

- \Box If only one bit is transmitted => propagation is important
 - Or a small amount of bits
- \Box If the amount of bits transmitted is large => bandwidth is important

Queuing time

18

- Packets received while a packet is being transmitted must be enqueued
- Otherwise, they'll be lost

Transmission time

19

- □ The packet on the first position in Queue is transmitted
 - Packet bits are *encoded* into signals (Electrical, Electromagnetic, Optical)
 - 1 bit from packet -> 1 signal waveform
 - At which speed (bps = bits/s) can this be done?
 - High Bw => High speed

Transmission time

- □ The packet on the first position in Queue is transmitted
 - Packet bits are turned into signals (Electrical, Electromagnetic, Optical)
 - 1 bit from packet -> 1 signal
 - At which speed (bps = bits/s) can this be done?
 - High Bw => High speed

Propagation time (t_{prop})

21

- Now, each signal must propagate over the wire until it reaches the receiver
 - Speed of light in empty space $c = 3 \times 10^8 \text{ m/s}$
 - **D** Speed of light in other media
 - Copper: 2,3 x 10⁸ m/s
 - Optical fibers: 2,0 x 10⁸ m/s

Latency = total time to transfer one packet (Point-to-point connection)

□ Latency = Propagation + transmit + queue

- □ Propagation time = physical link distance/speed of light m / (m/s)
- □ Transmit time = packet size/bandwidth bits / (bits/sec)
- □ If only one bit is transmitted => propagation is important
 - Or a small amount of bits
- \Box If the amount of bits transmitted is large => bandwidth is important

© 2018 José María Foces Morán & José María Foces Vivancos. All rights reserved http://paloalto.unileon.es/cn/ComplNotesCN.Ch1.pdf

24

Based on textbook *Conceptual Computer Networks* by: © 2022 José María Foces Morán, José María Foces Vivancos. All rights reserved

End of Ch 1 Section 3