
v1.2	

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos
	

1	

Universidad de León
Bachelor Degree on Computer Science and Engineering
Course on Computer Networks

CN Practice on Socket Programming and Wake-On-Lan

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos

--- Study Guide ---

The following study guide outline is not to be included in your LabBook
writeup:

1. Have the textbook by Peterson & Davie at hand. Most of the material
that we have taught so far belongs in book chapters 1 and 2. Find the 6th
edition to the book, here:

https://github.com/SystemsApproach/book/releases/download/v6.1/book.pdf

2. A valuable resource as you undertake the practice exercises contained in

WH4-Practice is the practices that we did the past academic year. Source
code and guiding explanations can be found in the practice scripts.

http://paloalto.unileon.es/cn/

3. In the present WH, we use a program that accesses the Ethernet
directly, its name is magic and it has been stored for you in your remote
account. Programs that access the network or datalink layers directly
require a Linux capability known as Raw Socket Capability. This
capability is usually limited to the system administrator (The root user),
but you need it so that the programs that you make can successfully
open the raw socket successfully. When I enable the remote access to Lab
B6, I start a service for having each of your programs conveniently
granted the CAP_NET_RAW capability. You simply have to redirect the
file’s full path name to a Linux fifo and soon the client process listening
on the fifo’s read side will grant your program the needed capability.
Below, you will find finer details about this process.

4. Include the solutions to the practice exercises in your LabBook
writeup.

v1.2	

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos
	

2	

Figure1. Lan30 offers 4 hosts for practicing programming with Linux

Packet Sockets

Exercises for practice

1. Remote execution and monitoring of the “magic” program, which accesses

the raw socket PF_PACKET interface. I recommend that you review your
notes from the Practice about Network Interfaces and from the Network
Architecture lesson for the concept of Service Interface and Sockets; also,
you can consult chapter 1 from the textbook by P&D and our lecture slides
from Chapter 1.

In paloalto.unileon.es port 50500, where you log in, granting each individual
student to have root privileges is not possible remotely since all the machines
are being shared across different courses by numerous students. In past
practices you downloaded an executable file (A program) from
paloalto.unileon.es which name was send-magic-to-22. Since you were
executing that program in your own personal computer, you could grant
CAP_NET_RAW capability. You were able to grant your Linux user that
capability because you probably belong to the administrators group, thereby
authorizing you to apply a capability by simply doing sudo. However, this is
not possible when remotely working at paloalto.unielon.es since the hosts used
are shared by multiple users.

Allowing each student to apply the CAP_NET_RAW capability as you did in
past practices when working in your personal Linux is precluded in this case
since applying capabilities in turn requires root privileges. Consequently, I’ve
devised a procedure for students to have their programs applied the
CAP_NET_RAW which doesn’t require root privileges. It consists of sending the
full path name of your executable to a certain Linux fifo; the server listening on the

IP Router
Lab B6

Network 1

Linux ssh
Port fwd

Internet

Cisco LAN Switch-Router
STP + VLAN + DHCP

Net number:
192.168.30.0/24

Home PC

192.168.30.103/24

192.168.30.100-199

Ssh
tunnel

Net number:
192.168.1.0/24

Computer Networks 2021
Remote Access to Lab B6

$ ssh -p 50500 student@paloalto.unileon.es
Lan30

v1.2	

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos
	

3	

reading end of the fifo will take care of appropriately applying the
CAP_NET_RAW capability without requiring root privileges. Please, use this
mechanism with diligence and only for the academic purposes it was conceived
for.

Assume that you have compiled a program that creates a PF_PACKET raw
socket which name is “magic”. Assume that your user name is student0.
Actually, that “magic” example executable file was already compiled and
stored in your paloalto.unileon.es account home directory: /home/student0. To
have the CAP_NET_RAW set on file magic without having root privileges,
proceed as in the outline below (The shell prompt is [internal 11] $).

a. Access your account at paloalto.unileon.es (Consult WH3 if necessary)
using the login name and password that I sent you to your Unileon e-
mail address. RemLabB6 must be open.

b. Once you are logged in, execute the commands in the following outline -
make sure you replace the student0 user name by yours.

[internal 11] $ whoami
student0

[internal 11] $ pwd
/home/student0

[internal 11] $ echo /home/student0/magic > /home/administrator/fifo.cn

Be attentive to send the full path name of your file to fifo.cn, otherwise,
your program will not be located by the capability-granting process. A
few seconds afterwards, if you check whether magic has the
CAP_NET_RAW capability, you’ll observe that it does have it:

[internal 11] $ setcap -v ‘CAP_NET_RAW=epi’ magic
magic: OK

This is the mechanism enabled by me for you to obtain the raw socket
capability for your programs without having root privileges.
Incidentally, the example program, magic, offers a convenient
functionality for us when accessing Lab B6: It allows us to wake up any
of the PCs available in Lan30. That is necessary to save electrical energy.
When we need a PC to be powered up, we simply execute magic and
pass it the correct command line arguments.

c. Program magic sends a standard Ethernet frame that is capable of waking
up specific hosts in our LAN (The name of this frame is magic packet).
We’ll use magic in this practice to wake up hosts 192.168.30.100,
192.168.30.101, 192.168.30.102 or 192.168.30.103, when necessary. We’ll
delve into the technical details about magic in WH5-Practice. For the time
being, it suffices that you execute magic in in Lan30 to power up a PC
and that you observe the Ethernet frame sent by magic from the PC you

v1.2	

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos
	

4	

are logged in. Find the 192.168.30.* IP address of the host you logged in
by executing ifconfig.

d. Note that, in this WH, you are executing magic remotely and that you
need to observe the sent traffic remotely, also. The utility for observing
traffic remotely is tcpdump, a command-line program that captures
traffic like Wireshark but without a window-based GUI, which makes it
very convenient at this time. Find one of the 4 PCs that belong to Lan30
which is not powered-up. Send it ping and check that is does not
respond. Capture the ping responses that you have obtained, if any.
Usually, the granted addresses are the lowest ones in the range (See
Fig.1). If ping indicates that we are receiving ICMP Echo Replies from
some machine, then login into it, record its MAC address (Ethernet HW
Address) and shut it down. You’ll need to pass that MAC address to the
magic program.

e. We want to capture the traffic generated by magic (The magic packet), so
you will need to create a new ssh session with port 50500 at
paloalto.unileon.es with your user name. Create that connection now
and type the following command at the shell prompt which will capture
the desired traffic (Replace enp1s0 below for the correct NIC name, if
necessary):

[internal 11] $ tcpdump -i enp1s0 ether proto 0x0942

The tcpdump command captures traffic on NIC enp1s0; that captured
frames will be restricted to those having an Ethertype value of 0x0942.
This is the standard multiplexing key used for Magic Packets. (Recall
from CN Practice 1 that you can obtain a full listing of available network
interfaces by issuing an ifconfig command). We will study the magic
packet more deeply on an upcoming practice.

f. Now, we can proceed to wake up the intended PC by sending it the
magic packet. On your other session (On another terminal window)
you’ll be able to observe the frame sent by program magic:

[internal 11] $./magic enp1s0 e0:d5:5e:dd:ec:67

As you suspect, e0:d5:5e:dd:ec:67 is the MAC address used by NIC
enp1s0.

Capture the message printed out by magic

g. Wait about 3 minutes for the PC to boot-up and, send it ping to check
whether or not it has fully booted-up along with the full TCP/IP
protocol stack. Capture the ping responses.

v1.2	

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos
	

5	

In case you receive no response from the host, try resending the magic
packet to it and, again, waiting until the PC boots up.

In case that you have received “ping” responses (ICMP Echo Reply) from
the intended host you can remotely login in that computer by using this
user/password combination:

User = administrator

Password = 19xxdpq16

Exercise due care for the PC that just booted up since it is shared among
all the students enrolled in this course and others. Whenever you finish
your work, log out but don’t shutdown the shared PC. Capture the
result of executing ifconfig and highlight the host NIC’s MAC address.

h. Switch to the other of your remote ssh sessions (The one on which
tcpdump is running) and make a screenshot of the captured magic
packet. If all ran well, you can kill tcpdump by composing the ctrl-c key
combination.

i. Visually observe the structure of the magic packet; try to identify its
structure. Which of its fields contains the destination MAC? The
destination MAC is comprised of the first 6 bytes from the frame. Include
the destination MAC here:

j. Next, after the destination MAC, comes the source MAC. Include it, here,
also:

k. The next field in the Ethernet frame is the multiplexing key (Technically
known as Ethertype). The Ethertype is comprised of 2 bytes. Include
here.

l. The next bytes in the frame, those that come after the Ethertype, all of
them comprise the payload. Observe it and try to explain if you see some
regularity.

m. After the DMAC (Destination MAC), comes the SMAC (Source MAC)
and the Ethertype (The multiplexing key used in Ethernet), finally comes
12 hexdecimal f constants (0xffffffffffff), can you explain its purpose?

n. How many times is the MAC address of the host that is intended to be
powered-up repeated?

o. If you wish to repeat the experiment you can execute tcpdump with the
options that normally print out richer information about the captured
traffic, as in the fowling tcpdump command line which will display the
ethernet headers along with the payload, all in hexadecimal base:

v1.2	

All rights reserved © 2013-2021 by José María Foces Morán and José María Foces Vivancos
	

6	

 $ tcpdump -vvv -XX -e -i enp1s0 ether proto 0x0842

Note that you will have to execute tcpdump with sudo or by first
switching to superuser with the su command.

