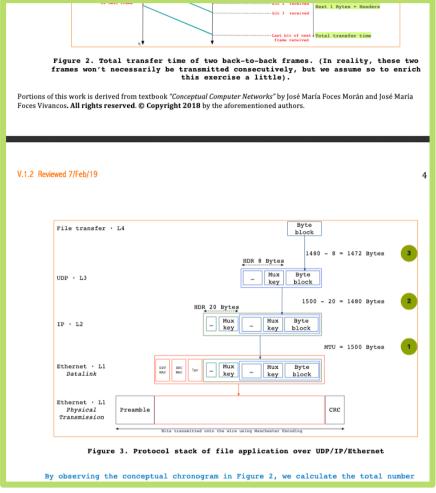
Chapter 1: Conceptual Basis Review Sect. 1-4

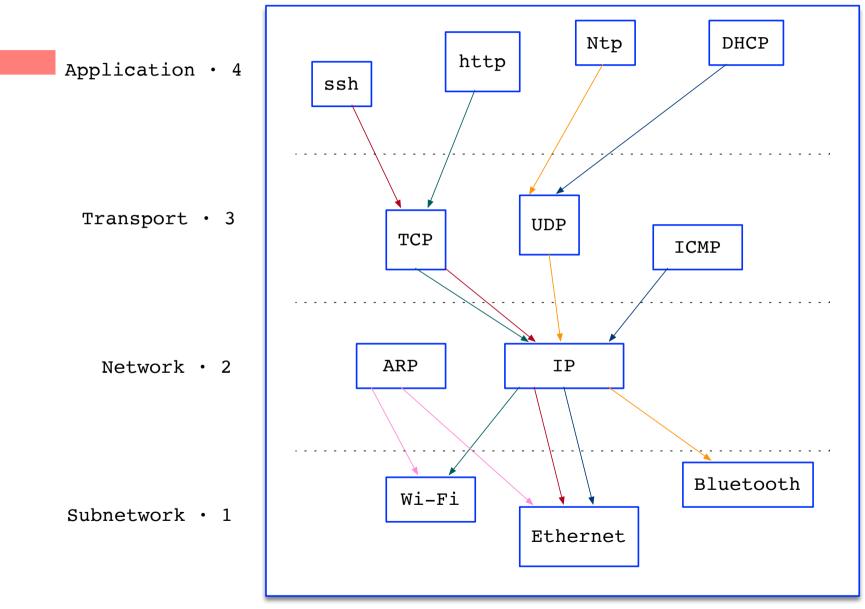

V 1.5, 7/Mar/19

Based on textbook *Conceptual Computer Networks* by: © 2018-19 José María Foces Morán, José María Foces Vivancos. All rights reserved

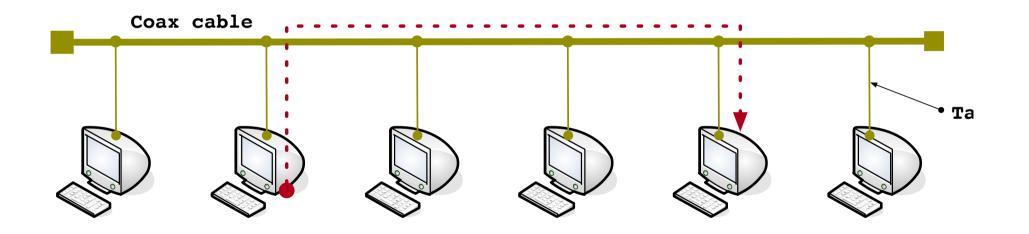
Textbooks and notes for CN

- □ Notes by professor
 - paloalto.unileon.es/cn
 - \Box Lecture slides
 - □ Complementary notes
 - □ Questionnaires + solutions
 - □ Practices
 - □ Solved exercises
 - □ Exams from past terms
- Computer Networks Textbook

by Peterson and Davie

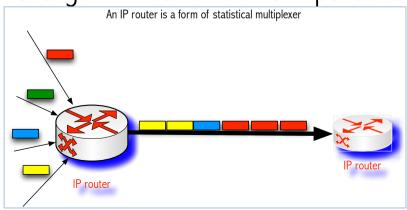

Units and multipliers

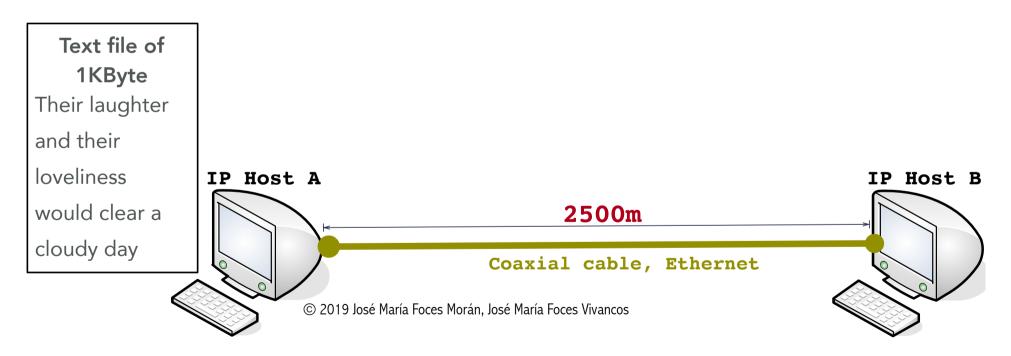
Bandwidth


- Bps (Bits Per Second = Bits/Sec)
- Since bandwidth is a <u>rate</u>, the multipliers take on the following values:
 - **G** K (Kilo = 10^3)
 - M (Mega = 10⁶)
 - **G** (Giga = 10^9)
 - **T** (Tera = 10^{12})
- Delay
 - Seconds
 - The time between the start and finish of an operation: data transfer, response time of a server, etc.
- Jitter
 - **•** The variance of the delay

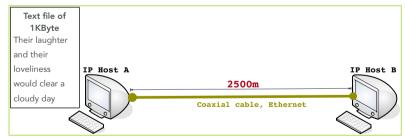
- □ Counting aggregates of bits, bytes, etc
 - **•** $K = 2^{10}$
 - M = 2²⁰
 - **G** = 2^{30}
 - 1 Byte = 8 bits

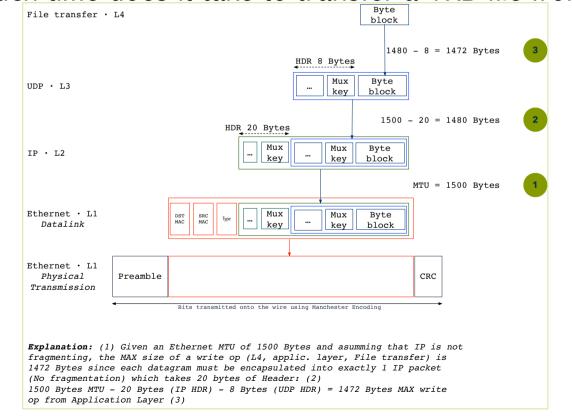
Typical Internet Protocol Stack


Ethernet


Latency = total time to transfer one packet (Point-to-point connection)

□ Latency = Propagation + transmit + queue


- □ Propagation time = physical link distance/speed of light m / (m/s)
- Transmit time = packet size/bandwidth bits / (bits/sec)
- \Box If only one bit is transmitted => propagation is important
 - Or a small amount of bits
- \Box If the amount of bits transmitted is large => bandwidth is important

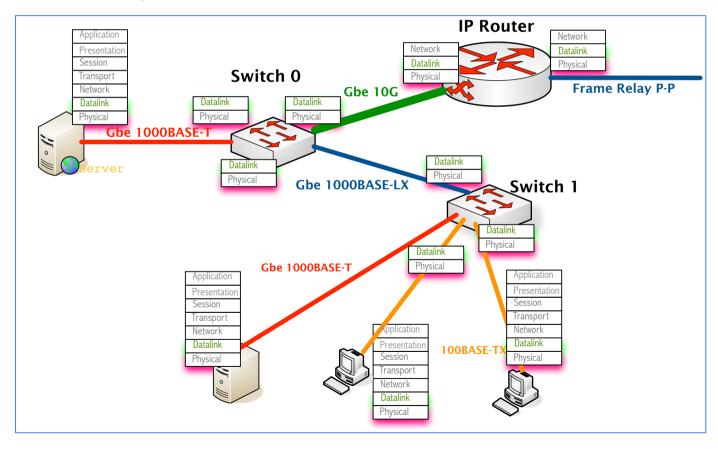

 Assume an Ethernet segment connects two end stations, A and B which are located at a distance of 2500 m from each other. How much time does it take to transfer a 1KB file from A to B?

- Assume an Ethernet segment connects two end stations, A and B which are located at a distance of 2500 m from each other. How much time does it take to transfer a 1KB file from A to B?
 - Time from start of transmission of first bit at A to the moment at which B finishes receiving the last bit
 - \square In Ethernet 2500 m => Rtt = 51,2 µs
 - □ Transmission speed is 10 Mbps
 - □ Assume:
 - □ UDP header takes 8 Bytes
 - □ IP header takes 20 Bytes
 - \Box Max allowable payload size = 1500 Bytes

Assume an Ethernet segment connects two end stations, A and B which are located at a distance of 2500 m from each other. How much time does it take to transfer a 1KB file from A to B?

 Assume an Ethernet segment connects two end stations, A and B which are located at a distance of 2500 m from each other. How much time does it take to transfer a 1KB file from A to B?

□ Full solution of *similar* exercise:

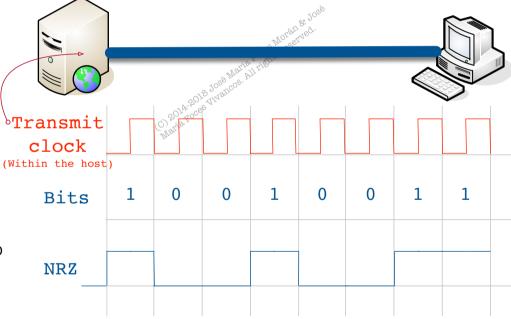

http://paloalto.unileon.es/cn/Q/CN-Ex1-2018-RefSOL.pdf

Theroretical connectivity is bounded by network technology

Metcalf's law: Represents the potential П connectivity of a network Connectivity = 1Nodes communicate by sending/receiving Connectivity = 2messages through the links which bandwidth is limited Connectivity = $3 \times 2 = 6$ Connectivity = 6 + 6 = 12Each node must 'have some knowledge' 6 nodes about the **topology** of the network Connectivity = $6 \times 5 = 30$ 6 nodes These factors limit the use of the potential connectivity

Datalink protocols in an Internetwork

Each direct connection between two network nodes has a link (Hosts, switches, routers)

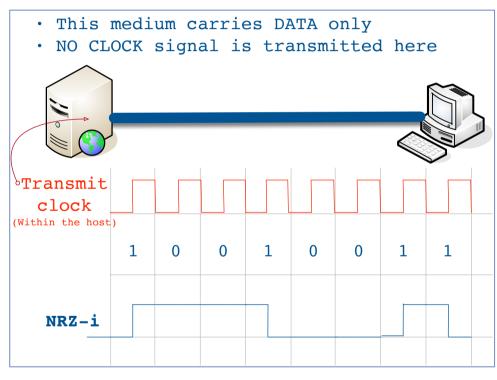

© 2018 José María Foces Morán, José María Foces Vivancos

Problems with NRZ

Clock recovery

- The transmitter sends symbols (0/1) at some transmission speed determined by an internal clock signal
 - In data communications this clock signal is not sent from sender to receiver
 - Then, how does the receiver become aware of the used transmission speed?
- At every clock cycle, the sender transmits a bit
- The receiver must be able to deduce the transmission speed from the signal containing the data
 - This entails <u>frequent transitions</u> from high to low or vice versa in the received <u>data signal</u>
 - This is known as <u>clock recovery</u>
 - Clock recovery yields a precise synchronization of sender and receiver

- This medium carries DATA only
- NO CLOCK signal is transmitted here

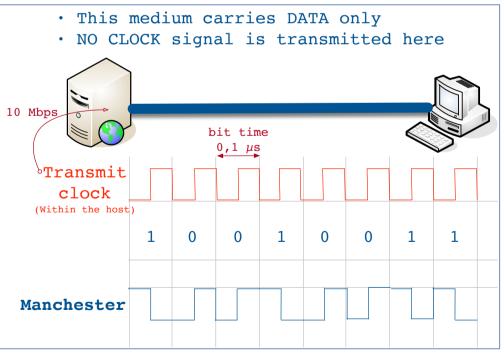


© 2018 José María Foces Morán, José María Foces Vivancos

NRZ-i: a partial solution to NRZ

NRZI

- Non Return to Zero
 Inverted
- Sender makes a transition
 from the current signal
 level to encode 1 and
 stays at the current signal
 level to encode a 0
- Solves for the consecutive <u>1's problem of NRZ</u>


Manchester: complete solution to NRZ

□ Strategy:

- Merge the clock with signal by transmitting Ex-OR of the NRZ encoded data and the clock
- Clock is an internal signal that alternates from low to high, a low/high pair is

considered as one clock cycle

- In Manchester encoding
 - 0: low \rightarrow high transition
 - 1: high \rightarrow low transition

© 2018 José María Foces Morán, José María Foces Vivancos

Links

□ Another important link characteristic is the *frequency*

- Measured in hertz, with which the electromagnetic waves oscillate
- Electromagnetic waves propagate as the electric field generates a magnetic field that generates an electric field ...

© Morgan Kaufmann 2012 Larry Peterson & Bruce Davie.

- Distance between the adjacent pair of maxima or minima of an electromagnetic wave measured in meters is called *wavelength*: $\lambda = v / f$
 - **•** Speed of light divided by frequency gives the wavelength.
 - Frequency on a copper cable range from 300Hz to 3300Hz; Wavelength for 300Hz wave through copper is speed of light on a copper / frequency
 - **2**/3 x 3 x 10^8 /300 = 667 x 10^3 meters.
- □ Placing binary data on a signal is called *encoding*
- Modulation involves modifying the signals in terms of their frequency, amplitude, and phase
 - **•** So that transmission over the physical medium is improved